Bump Hunting       

  revised: December 24, 2014     Home

It is difficult to draw the boundaries to discriminate response 1 from response 0 on the right. But, we can see that at the central region response 1 may be much denser than outside the region. So, we give up to draw clear boundaries discriminating response 1 from 0. Instead, we try to find much denser regions regarding response 1; we admit that response 0 may be included to some extent in these regions. Such a dense region is called the bump regions, and “finding such regions” is called “the bump hunting.”

 

 
     
     

 

 

Full Paper:

H. Hirose, Bump Hunting using the Tree-GA, Information, Vol.14, No.10, pp.3409-3424, (2011.10) Abstract

T. Yukizane, S. Ohi, E. Miyano, H. Hirose, The bump hunting method using the genetic algorithm with the extreme-value statistics, IEICE Transactions D: on Information and Systems, Vol.E89-D, No.8, pp.2332-2339 (2006.8) Invited Papers from New Horizons in Computing Abstract

著書:

H. Hirose, "The Bump Hunting by the Decision Tree with the Genetic Algorithm" in Advances in Computational Algorithms and Data Analysis, chapter 21, pp.305-318, Springer (2008.10). Abstract1 Abstract2

招待講演:

廣瀬:tree-GAによるるバンプ探索, OR学会九州支部講演(2009.12.26, 平成21.12.26)

国際会議:

Y. Aizawa, H. Hirose, Bias Correction for the Trade-off Curve in the Tree-GA Bump Hunting, 5th International Conference on E-Service and Knowledge Management (ESKM 2014), August 31-September 4, 2014, pp.126-130, Kitakyushu, Japan (2014). abstract

Yu Aizawa, Hideo Hirose, Bias Correction of Tradeoff Curve in the Bump Hunting Using the Tree-GA, The 2nd BMIRC International Symposium on Frontiers in Computational Systems Biology and Bioengineering, January 29 - 30, 2013, Fukuoka, Japan. abstract

H. Hirose, G. Koga, A Comparative Study in the Bump Hunting between the Tree-GA and the PRIM, 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2012), August 08 - 10, 2012, Kyoto, Japan. Studies in Computational Intelligence, Volume 443, 13-25, DOI: 10.1007/978-3-642-32172-6_2, Springer 2013. abstract

H. Hirose: Evaluation of the trade-off curve in the bump hunting using the tree genetic algorithm, "1st IMS Asia Pacific Rim Meetings", Abstract 166, June 28-July 1, 2009 at Soeul National University, Korea.

H. Hirose, T. Yukizane and F. Zaman: Accuracy assessment for the trade-off curve and its upper bound curve in the bump hunting using the new tree genetic algorithm, "7th World Congress in Probability and Statistics", Abstract 159, July 14-19, 2008 at National University of Singapore, Singapore.

H. Hirose and T. Yukizane: The accuracy of the trade-off curve in the bump hunting, "7th Hawaii International Conference on Statistics, Mathematics and Related Fields", January 17 (Thursday) to January 19 (Saturday), 2008 at the Waikiki Beach Marriott Resort & Spa in Honolulu, Hawaii

Hirose, H., Yukizane,T., and Deguchi, T., The bump hunting method and its accuracy using the genetic algorithm with application to real customer data, IEEE 7th International Conference on Computer and Information Technology 2007 (CIT2007), pp.128-132, October 16-19, 2007, Aizu University

H. Hirose: Estimation for the number of fragile samples in the trunsored and truncated models with application to the case fatality ratio for the infectious diseases, "6th Hawaii International Conference on Statistics, Mathematics and Related Fields", January 17-19, 2007 at the Waikiki Beach Marriott Resort & Spa in Honolulu, Hawaii

H. Hirose, S. Ohi, and T. Yukizane: Assessment of the prediction accuracy in the bump hunting procedure, "6th Hawaii International Conference on Statistics, Mathematics and Related Fields", January 17-19, 2007 at the Waikiki Beach Marriott Resort & Spa in Honolulu, Hawaii

H. Hirose, T. Yukizane, E. Miyano: Boundary Detection for Bumps using the Gini's Index in Messy Classification Problems, "The 3rd International Conference on Cybernetics and Information Technologies, Systems and Applications: CITSA 2006", pp.293-298, July 20-23, 2006, Sheraton World Resort, Orlando, Florida, USA

H. Hirose : Optimal boundary finding method for the bumpy regions, "IFORS2005 (International Federation of Operational Reasearch Societies) Triennial 2005 Conference ", FD-19 (Data Mining, and Databese Modeling) -3 , p.139, July 11-15, 2005, at Hilton Hawaiian Village Beach Resort & Spa,Honolulu

H. Hirose : A method to discriminate the minor groups from the major groups, "2005 Hawaii International Conference on Statistics, Mathematics and Related Fields", January 9-11, 2005, at Sheraton Waikiki Hotel,Honolulu

H. Hirose : Trunsored Data Analysis with Applications to Field Data, "Hawaii International Conference on Statistics and Related Fields", June 5-9, 2002, at Sheraton Waikiki Hotel,Honolulu

研究会:

愛澤, 廣瀬: Tree-GAを用いたbump huntingにおけるトレードオフ曲線のバイアスについて, 日本計算機統計学会第27回大会論文集, pp.185-188, (2013.5.16-17) 弘前大学

古賀,廣瀬: bump huntingにおけるtree-GAとPRIMの比較について, 情報処理学会火の国シンポジウム2011, A-5-4, (2012.3.15-16), 九州工業大学

廣瀬, 行實: bump huntingとその顧客データへの応用, シンポジウム: 高度情報抽出のための統計理論・方法論とその応用 (8), 10 pages (2008.11) (平成20.11.20-22), 九州大学附属図書館視聴覚ホール(九州大学箱崎キャンパス

廣瀬: 極値分布のバンプ探索への適用, 統計数理研究所研究会.極値理論の工学への応用, 統計数理研究所 (平成19.12.8)、平成19年度共同研究(統計数理研究所共同研究リポート212 共同研究課題 19-共研-5009, pp.81-91)

出口, 行實, 宮野, 廣瀬: 顧客データベースにおけるbump huntingとその精度, 日本計算機統計学会第21回大会論文集, pp.115-118 (平成19.5.30) 倉敷市芸文館(倉敷市); abstract, 計算機統計学、vol. 20, No.1-2, p.111 (平成20.9 (2008.9.2))

行實, 廣瀬, 大井, 宮野: バンプ探索における解の精度, 情報処理学会MPS62BIO7合同研究発表会、pp.13-16 (平成18.12.21) 電気通信大学(調布)abstract

松本, 廣瀬: Trunsored modelとSARS死亡率の信頼度: 地域による変動, 2006年度統計関連学会連合大会, pp.256 (平成18.9.8) 東北大学(仙台)

廣瀬:Trunsored data analysis (2005年度論文賞招待講演), IEEE Reliability Japan Chapter Annual Meeting, (2006.8.5, 平成18.8.5 電気通信大学)

廣瀬、行實、大井、宮野、Bump問題における極値統計の応用、日本計算機統計学会19回シンポジウム論文集, pp.55-58 (平成17.10.19) サンエール鹿児島;abstract, 計算機統計学、vol. 19, No.1, p.66 (平成19.7 (2007.7.31))

廣瀬、松本、中山: 連続・2値データが混合されたTrunsoredモデルのパラメータ推定, 日本信頼性学会第13回研究発表会報文集, pp.87-90 (平成17.5.23) 日本科学技術連盟東高円寺ビル

廣瀬、大野: Trunsored Modelによるdurable, fragile混在製品の混合比の尤度比検定, 日本信頼性学会第12回研究発表会報文集, pp.47-50 (平成16.5.24) 日本科学技術連盟東高円寺ビル;日本信頼性学会誌、vol. 26, No.5, pp.487-490 (平成16.7 (2004.7))

小林、内尾、廣瀬: 顧客データベースのデータマイニング, 日本計算機統計学会第16回大会論文集, pp.48-51 (平成14.5.17) 高知大学メディアの森メディアホール;abstract, 計算機統計学、vol. 15, No.1, p.98 (平成15.12.20 (2003.12.20))